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Abstract 
The effects of the top coating thickness, modulus and shrinkage strains on the crack driving forces for 

a baseline multi-layer Yttria-Stabilized-Zirconia/Mullite/Si thermal and environment barrier coating 
(TEBC) system for SiC/SiC ceramic matrix composite substrates are determined for gas turbine 
applications. The crack driving forces increase with increasing modulus, and a low modulus thermal 
barrier coating material (below 10 GPa) will have no cracking issues under the thermal gradient condition 
analyzed. Since top coating sintering increases the crack driving forces with time, highly sintering 
resistant coatings are desirable to maintain a low tensile modulus and maintain a low crack driving force 
with time. Finite element results demonstrated that an advanced TEBC system, such as ZrO2/HfO2, which 
possesses improved sintering resistance and high temperature stability, exhibited excellent durability. A 
multi-vertical cracked structure with fine columnar spacing is an ideal strain tolerant coating capable of 
reducing the crack driving forces to an acceptable level even with a high modulus of 50 GPa. 

Introduction 
Significant progress has been achieved in improving the quality of SiC/SiC composite materials for 

hot section components in gas turbine applications (ref. 1). Melt infiltrated (MI) SiC/SiC composites are 
emerging as the leading material for shrouds, vanes and combustor liners in commercial gas turbines 
because of their high thermal conductivity, excellent thermal shock resistance, creep resistance, and 
oxidation resistance compared to other ceramic matrix composites (CMC) and to nickel and cobalt-based 
super alloys used in current engines (ref. 2). Durability has been demonstrated in excess of 9,000 hr at 
combustor temperatures and stresses within the current designs (ref. 1). A risk, that can significantly 
reduce the lives of the SiC/SiC composites in an engine environment, is the lack of environmental 
durability (ref. 3) in the presence of water vapor. Oxide coatings have shown promise in providing an 
environmental protection for these SiC/SiC composites due to their resistance to a corrosive environment 
up to 1250 °C (ref. 3). To further extend the thermal capability of SiC/SiC ceramic composite 
components to the hot wall surface temperatures up to 1650 °C, thermal and environmental barrier 
coatings (TEBC)s are being developed under the NASA Ultra-Efficient Engine Technology (UEET) 
Program (refs. 4 and 5). One of the UEET program goals is to improve the fuel efficiency and reduce the 
NOx emission of future gas turbine engines by allowing for even higher gas temperature with little or no 
film cooling compared to current engines. 
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Baseline plasma-sprayed Yttria-Stabilized Zirconia (YSZ: ZrO2-8wt.%Y2O3) thermal barrier and 
BSAS+mullite/Si environment barrier layered coatings showed excellent adherence to the SiC/SiC 
ceramic matrix composite substrates under thermal cycling in burner rig tests up to 1250 °C (ref. 3). But 
the same coating system tested to higher temperatures (up to 1480 °C), especially under a temperature 
gradient condition, resulted in coating delamination failures which were attributed to an increase in the 
crack driving forces in the coating (refs. 6 and 8). Therefore, research is being performed to develop 
advanced thermal and environmental barrier coating systems, which can last for tens of thousands hours 
as required for gas turbine applications. The ideal candidate TEBC system should have a low thermal 
conductivity, good high-temperature stability and resistance to sintering. Current research efforts are 
underway at NASA Glenn to screen various candidate coating materials such as hafnia-, pryochlore-, and 
magnetoplumbite-based TEBC (refs. 4 and 5) as well as advanced bond coat systems that can meet the 
1650 °C durability requirements. 

 
TABLE I.—ASSUMED MATERIAL PROPERTIES 

 Thermal 
conductivity,  

k 

Coefficient of 
thermal expansion, 

CTE 

Elastic 
modulus, 

E 

Specific  
heat,  

c 

Density, 
ρ 

Poisson’s 
ratio,  

ν 
 W/m-K 1/°C GPa J/kg-K Kg/m3  

MI SiC/SiC 
CMC 20 5.20x10–6 125 620 @20 °C 

1200@1000 °C 3100 0.3 

Si 83.7 5.00x10–6 200 700 2330 0.27 
EBC 2 5.50x10–6 90 750 2500 0.25 
TBC 1 1.00x10–6 ~5 to 50 582 5236 0.2 

 
In this study, the effects of temperature gradients and coating configurations are analyzed using finite 

element analysis (FEA) models based on the observed cracking in an YSZ baseline TEBC system. The 
only applied loadings are thermal loads. The crack driving forces as a function of crack length, coating 
layer thickness, top coating modulus and sintering time are reported to provide an insight into the material 
properties required in minimizing the cracking and delamination observed in the baseline TEBC 
protecting system for SiC/SiC composite material. 

Finite Element Approach 
The temperature and stress distributions are calculated as a function of coating layer thickness and 

thermal heat flux using the finite element method. ABAQUS-6.4 (ref. 9) was the platform employed to 
run the FEA models. The idealized specimen geometry was assumed to be a 2D structure formed from a  
2 mm thick substrate with a three layer baseline TEBC system deposited on the top face. The top coating 
layer, which is the thermal barrier coating (TBC) layer, consisted of a ZrO2-8wt.%Y2O3 layer with a 
thickness ranging between 0.127 to 0.508 mm. The second coating layer, which is the environmental 
barrier coating (EBC) layer, consisted of a mullite layer with a thickness ranging from 0.508 to 0.127 
mm. The third layer is assumed to be a bond coat (BC) layer of 0.127 mm thick Si. The sum of the TBC 
and EBC thickness was a constant in this study, always equal to 0.635 mm. Four different combinations 
of TBC and EBC thickness were considered ranging from 0.127 to 0.508 mm. The assumed material 
properties are presented in table I. A range of the YSZ elastic modulus was assumed in this study since 
the TBC tensile modulus was observed to vary with sintering time (ref. 10). 

Thermal loading was the only load applied in this study. The assumed stress free condition in the 
coated system was taken at the maximum applied temperature, and the stresses were actually developed 
upon cool down to room temperature. A comparison between the in-plane stress profiles developed under 
a uniform temperature and a temperature gradient is shown in figure 1 for a TBC and EBC layer thickness 
of 0.381 and 0.254 mm, respectively. A constant temperature of 1350 °C results in a uniform stress  
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Figure 1.—In-plane stress profile comparison between a  

uniform and a gradient applied temperature. 
 

distribution within each layer due the CTE mismatch between the various materials. The temperature 
gradient between the 1600 °C TBC hot side surface wall and the 1100 °C cooler substrate backside wall 
resulted in higher stresses due to a combination of uniform and bending load components in each layer 
generated by the addition of the 500 °C through the thickness temperature gradient. 

To study the effects of sintering on the developed stresses, a time dependent shrinkage strain rate as a 
function of the temperature and hold time was implemented in the finite element program as a volumetric 
shrinkage in a Creep type user defined subroutine. The total shrinkage strain and the resulting stresses 
were then calculated incrementally given a hold time and temperature in the YSZ top coat based on the 
experimentally measured shrinkage rates. The assumed equation relating the shrinkage strain rate to the 
temperature (T) and time followed the classical arrhenius type relation between strain rate and 
temperature, given as (refs. 11 and 12): 

 

 ( )tfeA
dt
d RT

Q
−

=
ε

=ε&  (1) 

 
where A, R are constants, Q is the activation energy, and f(t) is a functional relation of time as 

determined by a best fit curve of the experimental data. Figure 2 shows the comparison between the 
experimental data shown as solid symbols and the curve-fit relations using equation 1 shown as open 
symbols for the shrinkage rate of YSZ for temperatures ranging from 1200 °C up to 1500 °C.  

The cracked geometries assumed are shown in figure 3 for a crack propagating near either the EBC/Si 
(fig. 3(a)) or TBC/EBC (fig. 3(b)) interfaces, simulating experimentally observed TEBC cracks under a 
cyclic laser heat-flux test. The crack driving forces were calculated using the contour integral technique 
through the virtual motion of a block of element surrounding the crack tip as implemented in ABAQUS. 
The depth of the crack was always assumed to be 0.0254 mm above the interface. The crack tip 
singularity was modeled using the standard “quarter point node” technique, by degenerating the eight-
node biquadratic elements surrounding the crack tip into wedge elements and by moving the mid-sided 
nodes adjacent to the crack tip to one quarter of the edge length (ref. 13). The crack length analyzed in 
this study ranged from 0.2 to 6 mm. To vary the crack length, a routine was formulated to scale the node 
locations surrounding the crack tip in proportion to the desired crack length and crack depth. 



 

NASA/TM—2005-213835 4

 

 

Crack Driving Forces 
The variations of the Mode I and Mode II stress intensity factors as a function of the crack length are 

shown in figure 4 for a 0.381 mm TBC thick layer and a 0.254 mm EBC thick layer under constant and 
temperature gradient cases and a TBC tensile modulus of 10 GPa. The variation of the stress intensity 
factors (SIF)s for the constant temperature profile is almost independent of the crack length, with a 
constant ratio of the stress intensity factors KI/KII equal to 1.3. For the temperature gradient case, the 
Mode I and Mode II stress intensity factors increase with increasing crack length. For short cracks up to 
0.5 mm, the Mode II SIF for the temperature gradient case is almost equal to the Mode II of the constant 
temperature case. But the Mode I SIF is about 50 percent higher for the temperature gradient case 
compared to the constant temperature case. This variation reaches a high of 300 percent for a crack length 
of 3 mm. 
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Figure 2.—Experimental and modeled shrinkage strain for the baseline 

YSZ thermal barrier coating as a function of time and temperature. 
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Figure 3.—Assumed crack geometry; (a) EBC crack, (b) TBC crack and (c) actual. 
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The variation of the effective SIF is also shown in figure 4 based on the maximum principal stress 

mixed mode criterion as derived by Erdogan and Shih (ref. 14) given below for completeness:  
 

 
2

sin
2

cos3
2

cos 23 mm
II

m
Ieff KKK θθ

−
θ

=  (2) 

 
where θm is defined as the direction of the maximum principal stress given by: 
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The trend of the effective SIF variation with crack length follows closely the Mode I and Mode II SIF 

trends. These trends emphasize the need to always test a new TEBC system for gas turbine applications 
under a temperature gradient simulating the actual engine thermal environment, rather under a uniform 
temperature.  

The variation of the effective SIF with TBC coating thickness is shown in figure 5 for a constant 
TEBC total thickness of 0.635 mm and a constant crack length of 0.5 mm for the temperature gradient 
case. A crack developed in the TBC results in an increasing SIF with increasing TBC thickness due to the 
increase in the bending load component in that layer with increasing thickness. The effective SIF for a 
crack growing in the EBC shows a minimum at 0.254 mm TBC thickness. The magnitudes of the SIF in 
the EBC layers are always higher than the magnitudes for a crack in the TBC layer, due to the additional 
stresses transferred from the fully cracked TBC into the partially cracked EBC ligament. These results 
demonstrate the need for a higher fracture toughness EBC material than the TBC material. 
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Figure 4.—Stress intensity factor as a function of the crack length. 
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Next, the variation of the effective SIFs with sintering time is calculated as a function of the TBC 

elastic modulus. The analysis assumed a constant crack length of 0.5 mm in the TBC layer for a TEBC 
geometric construction of a 0.381 mm thick TBC layer and a 0.254 mm thick EBC under the thermal 
gradient condition. The effective SIF increases with increasing TBC modulus starting from 1MPa.m1/2 for 
a TBC modulus of 5 GPa to well above 10 MPa.m1/2 for a 50 GPa TBC modulus (above any measured 
fracture toughness of plasma sprayed YSZ (ref. 10)), (see fig. 6). As the TBC layer sintered during 
exposure, the effective SIF increases with time upon cool down. The crack driving forces increase quickly 
within the first 50 hours of exposure and then increase more gradually with increasing time. The initial 
rise of the SIF is gentler for a low modulus TBC material in the range of 5 to 10 GPa and is steeper for 
the higher modulus TBC (20 to 50 GPa). The results show that highly compliant materials are desirable in 
a TEBC system to accommodate the CTE mismatch and the temperature gradient. The ideal coating needs 
also to retain the low modulus after sintering during exposure to high temperature which is a clear 
challenge to the material developers as shown by Choi et al. in reference 10. Figure 7 shows a comparison 
between experimental measurements of the coating thermal conductivity with time for the baseline YSZ 
coating and an advanced HfO2 based sintering resistance coating. The measured thermal conductivity 
reduction for the YSZ coating can be related to an increase in the delamination area along the interfaces 
with increasing cycles. 
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Figure 5.—Effective stress intensity factor as a function of the TBC thickness. 
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The final simulation is to study the effects of multi-vertical cracked structure for a crack in the TBC 
layer, also under a temperature gradient condition. In this simulation, the TBC coating is sectioned 
vertically for various spacing λ ranging from 50 to 200 µm horizontally for a 50 GPa TBC modulus.  
The effective SIF decreases with decreasing vertical spacing λ and increasing crack length, as shown in 
figure 8. The magnitudes of the SIF for the multi-vertical cracked structure are now in the range of 1 to  
2 MPa.m1/2 even with a 50 GPa elastic modulus, which are almost in the ranges of a single crack case with 
a 5 GPa modulus as shown in figure 6.  

Conclusion 
The crack driving forces in a baseline line TEBC system were determined as a function of the coating 

layer thickness, elastic modulus and sintering time. The crack driving forces increase with increasing 
modulus. An elastic modulus of less than 10 GPa is required to reduce the crack driving forces to an 
acceptable level. The ideal TBC coating must possess a low thermal conductivity, high strain tolerance 
and high sintering resistance. A multi-vertical cracked structure with fine columnar spacing is an ideal 
strain tolerant coating capable of reducing the crack driving forces to an acceptable level even with a high 
modulus of 50 GPa. 
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Figure 7.—Thermal conductivity variation with time. 
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